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1. Introduction.-The aim of this note is to extend some of the recent work
on spline interpolation so as to include also a solution of the problem of graduation
of data. The well-known method of graduation due to E. T. Whittaker suggests
how this should be done. Here we merely describe the idea and the qualitative
aspects of the new method, while proofs and the computational side will be discussed
elsewhere.

2. Spline Interpolation.-Let I = [a, b] be a finite interval and let (x,, yJ),
(v = 1, ... , n), be given data such that a . xl <x2 < ... < .n_ b. The following
facts are known:'

Let m be a natural number, m < n. The problem offinding a function f(x) (x C I)
having a square integrable mth derivative and satisfying the two conditions

f(x,) = y,, (v = 1, . . ., n), (1)

Jf (r
1

J (fP(x))2dx = minimum, (2)

has a unique solution which is the restriction to [a, b] of the function s(x) = S(x; yi,
Y2,.. yXn) which is uniquely characterized by the three conditions

s(x,) = y,, (v = 1, . . ., n) (3)

S(X) EEC21n-2 (-co 0) 4

S(X) E 7r2m-1 in each of the intervals (xv, x,+,)

s(X) E 7rm- in (-A, xi) and also in (Xn, Axk).
The functions defined by the two conditions (4) and (5) are called spline functions

of order 2m (or degree 2m - 1), having the knots x,; we denote their class by the
symbol Sm.
We have assumed that 1 . m < n. If m = 1, then s(x) is obtained by linear in-

terpolation between successive y,, while s(x) = y, if x < xi and s(x) = yn if x > x,.
If m = n, then Sm = 7rt.. and s(x) is the polynomial interpolating the y,.

3. Whittaker's Method of Graduation.-In 1923 E. T. Whittaker3 proposed the
following method of adjusting the ordinates y, if these are only imperfectly known
and are in need of a certain amount of smoothing: he chooses m, 1 _ m < n, and the
(smoothing) parameter, e, e > 0. The graduated sequence y,* = y,*(e) is then ob-
tained as the solution of the problem

n-m n

E (A"'yy'*)2 + (y,* y) 2 = imniin-tun, (6)
v~~~~l~~~1

where
v +-m

Yv*= E Y i /W w(X)X(z) = (x - xv) ... (x - Xv+m)
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are the divided differences.
We use throughout this note the notation

n
Ef = Ef(x) = (f(X,) - y)2 (7)

and define the familiar least squares polynomial Q(x) £ 7rm1- as the solution of the
problem

Ef = minimum, U 1irm-) (8)

It is easily shown that Whittaker's graduated values y,*(e) have the properties

lim Y,*(E) = y,, lim Y,*(E) = Q(x^). (9)

4. Graduation by Spline Functions.-In an attempt to combine the spline inter-
polation described in section 2 with Whittaker's idea, we propose the following
PROBLEM 1. Let m < n and E> 0. Among all f(x), defined in I, having a square

integrable mth derivative we propose to find the solution of the problem

eJf + Ef = minimum. (10)
If the solution Q(x) of the problem (8) is such that EQ = 0, then it is clear that

f = Q also solves the problem (10) for all e > 0. In order to exclude this trivial case
we shall assume throughout that

EQ > 0, or equivalently Js > 0. (11)

THEOREM 1. The minimum problem (10) has a unique solution f(x) = S(x, E)
which is a spline function of the family Sm.
We state the analogues of the relations (9) as
THEOREM 2. The functions s(x) and Q(x) being as defined before, the following rela-

tions hold

lim S(x, E) = s(x), lim S(x, e) = Q(x). (12)
eHo ta-Ico

5. An Equivalent Approach.-The quantity Jf evidently measures the departure
of f(x) from being an element of lrmi-; likewise Ef measures how well f(x) describes
the data (xf, yi). A sensible approach to the problem of graduation is as follows:
Assuming (11), we choose u in the range 0 _ u . Js and propose to find the solution

of the problem
Ef = minimum, among functions f(x) subject to Jf _ u. (13)

That this approach again leads to the solution of Problem 1, as described by
Theorem 1, is stated as
THEOREM 3. The solution f(x) = Su(x) of the problem (13) is unique and such that

Su(x) C Sm, JSu = u.

The two families of spline functions

Su(x), (O _ u . Js) and S(x,e) (O < e . ao)
are identical. If we regard v = ESu as a function of u = JSu and express the depend-
ence as
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v = P(u), (O < u _Js), (14)

then the graph of (14) is a smooth and strictly convex arc with

I(0) = EQ V'(0) = -a, 4D(Js) = 0, c1'(Js) = 0. (15)
It follows that the function 1'(u) is strictly decreasing in its domain of definition.
Finally, the relation between u and the smoothing parameter e of section 4 is described by
the relation

(= -¢~'(u). (16)
The convexity of the graph of (14) and (15) allows us to see readily on the graph

why Su(x) is the solution of the problem

eJS + ES = minimum, for S C 8m,

and why therefore Su(x) = S(x, e). I add that (14) may be represented in para-
metric form and that u and v are rational functions of the parameter e.

6. A Formal Comparison with Whittaker's Method.-We return to section 2 and
wish to express .JS(x; yi, . . . , y,) in terms of the y,. This can be done as follows:
We denote by Mi(x) the kernel in the integral representation of the divided differ-
ence

Amg(xi) = - f Mi(x)g(m)(x)dx (i = 1 n )
and extending the definition of Mi(x) to all x by setting M,(x) - 0 if x is outside
(Xi, Xi+m), we write

L = Mi(x)Mj(x)dx, (i,j = 1, .. , n -m).

The matrix ILijL is positive definite, and if we introduce its inverse

IIAjjII = ||LijI |-1X
then4

n-m
JS(x; yi, . . ., Y.) = EAijAmyAmy (17)

Setting S(xi, e) = of, hence S(x, e) = S(x; rll, . . , n) it follows from (17) that
the solution of the problem (10) reduces to the solution of the algebraic problem

n-m n
i, AjArnnmjAm-qj + Z (i7, - yD2 = minimum. (18)
1 1

A comparison of the first sums in (6) and (18) shows that the new method arises if we
n-im

replace in (6) the form EI t2 by the positive definite quadratic form E Atj tubj.
This increase in complexity might be compensated by the new method furnishing
also the approximating spline function S(x, e), if such an approximation is desirable
[e.g., compare the first relations (9) and (12) ]. A further actual comparison of the
two methods will require numerical experimentation
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7. The Case of Periodic Data.-In a recent paper5 I introduced the method of
trigonometric spline interpolation. The discussion of sections 4 and 5 carries over to
the periodic case and need not be elaborated. The analogue of Problem 1 is as fol-
lows: assuming 2m + 2 < n, e > 0, we are seeking the function f(x), of period 2 r,
having a square integrable (2m + 1)st derivative and which solves the problem

Ef(AJf)2dx + (f(xv) -y) = minimum, [A.m = D(D2 + 12) ... (D2 + M2)]
1

the integration being over an entire period while the x, are increasing with x,-
x1 < 27r. The unique solution is a trigonometric spline function S(x, e) having
properties analogous to those stated in Theorems 1, 2, and 3. Naturally, the role of
Q(x) is now played by the trigonometric polynomial T(x), of order m, which solves
the problem

n

Z (T(x,) - y')2 = minimum.
1

* Work done with partial support by a grant from the National Science Foundation contract
GP-2442.

1 For references, see Proc. Roy. Netherl. Acad., A67, 155-163 (1964). A recent paper is by
T. N.E. Greville (Math. Res. Center Tech. Report No. 450, Madison, Wis., January 1964).

2 We denote by 7k the class of real polynomials of degree not exceeding k.
3Whittaker, E. T., Proc. Edinburgh Math. Soc., 41, 63-75 (1923).
4 See these PROCEEDINGS, 51, 28 (1964), formula (15), for a simplification occurring in the case

when the x, are in arithmetic progression.
To appear in the November 1964 issue of J. Math. Mech.
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The cells of leukemias induced in mice by several different viruses possess specific
antigens that can be demonstrated by serological methods.1-8 Leukemias induced
by Friend, Moloney, and Rauscher viruses share antigenic determinants that are
not present in leukemias induced by Gross virus.6. 8 It has recently been shown that
the antigen characteristic of leukemias induced by Rauscher virus may be acquired
by the cells of unrelated transplanted leukemias during passage in mice infected
with Rauscher virus, a phenomenon which has been named "antigenic conversion."9
These converted cells are susceptible to the cytotoxic activity of specific Rauscher
antiserum, and this sensitivity persists indefinitely on serial transplantation of
converted lines. Permanent antigenic conversion by Rauscher virus has now been
shown to occur in vitro in an established tissue culture line of the leukemia EL4.10
Thus it is clear that leukemia cells can support the continued multiplication of an


